The problem of fair classification can be mollified if we develop a method to remove the embedded sensitive information from the classification features. This line of separating the sensitive information is developed through the causal inference, and the causal inference enables the counterfactual generations to contrast the what-if case of the opposite sensitive attribute. Along with this separation with the causality, a frequent assumption in the deep latent causal model defines a single latent variable to absorb the entire exogenous uncertainty of the causal graph. However, we claim that such structure cannot distinguish the 1) information caused by the intervention (i.e., sensitive variable) and 2) information correlated with the intervention from the data. Therefore, this paper proposes Disentangled Causal Effect Variational Autoencoder (DCEVAE) to resolve this limitation by disentangling the exogenous uncertainty into two latent variables: either 1) independent to interventions or 2) correlated to interventions without causality. Particularly, our disentangling approach preserves the latent variable correlated to interventions in generating counterfactual examples. We show that our method estimates the total effect and the counterfactual effect without a complete causal graph. By adding a fairness regularization, DCEVAE generates a counterfactual fair dataset while losing less original information. Also, DCEVAE generates natural counterfactual images by only flipping sensitive information. Additionally, we theoretically show the differences in the covariance structures of DCEVAE and prior works from the perspective of the latent disentanglement.


翻译:公平分类的问题可以被软化。 将敏感信息从分类特征中去除的嵌入敏感信息的方法可以被软化。 将敏感信息从分类特征中去除的这一分界线是通过因果推断开发的, 而因果推断使反事实几代人能够将反事实几代人对反敏感属性的案情进行对比。 除了这种分解外,深潜因果模型中常见的假设界定了一个单一的潜在变量,以吸收因果图的全部外源不确定性。 然而,我们声称,这种结构无法区分与数据干预(即敏感变量)相关的1个信息(即敏感变量)和2个信息。 因此,本文提议通过将外源不确定性分为两种潜在变量(1)或(与因果因果模型有关),解决这一限制。 特别是,我们模糊的方法将潜在变量与干预(即敏感变量)导致的1个变量联系起来,从而生成反事实实例。 因此,我们的方法在不完全因果图表中估算出整体效果和反效果,而无需完整的因果影响结果。 此外,我们又增加了一个真实的、 真实性、 真实性、 真实性、 真实性、真实性、 真实性、 真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性、真实性

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
25+阅读 · 2020年2月15日
ICML2019:Google和Facebook在推进哪些方向?
中国人工智能学会
5+阅读 · 2019年6月13日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年1月11日
Arxiv
0+阅读 · 2021年1月11日
Arxiv
6+阅读 · 2020年12月8日
Arxiv
4+阅读 · 2018年4月9日
Arxiv
8+阅读 · 2018年3月17日
VIP会员
相关资讯
ICML2019:Google和Facebook在推进哪些方向?
中国人工智能学会
5+阅读 · 2019年6月13日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员