Learning causal relationships is a fundamental problem in science. Anchor regression has been developed to address this problem for a large class of causal graphical models, though the relationships between the variables are assumed to be linear. In this work, we tackle the nonlinear setting by proposing kernel anchor regression (KAR). Beyond the natural formulation using a classic two-stage least square estimator, we also study an improved variant that involves nonparametric regression in three separate stages. We provide convergence results for the proposed KAR estimators and the identifiability conditions for KAR to learn the nonlinear structural equation models (SEM). Experimental results demonstrate the superior performances of the proposed KAR estimators over existing baselines.
翻译:学习因果关系是科学的一个基本问题。 已经为一大批因果图形模型开发了临界回归,以解决这一问题,尽管假设变量之间的关系是线性的。 在这项工作中,我们通过提议内核锚定回归(KAR)来解决非线性设置问题。除了使用传统的两阶段最低平方估计值的自然配方外,我们还研究一个改进的变方,它涉及三个不同阶段的非对数回归。我们为拟议的KAR估计值和KAR可识别性条件提供了趋同结果,以便KAR学习非线性结构方程模型(SEM)。实验结果表明,拟议的KAR估计值比现有基线的优异性表现。