This paper considers the state estimation problem for nonlinear dynamic systems with unknown but bounded noises. Set membership filter (SMF) is a popular algorithm to solve this problem. In the set membership setting, we investigate the filter problem where the state estimation requires to be constrained by a linear or nonlinear equality. We propose a consensus alternating direction method of multipliers (ADMM) based SMF algorithm for nonlinear dynamic systems. To deal with the difficulty of nonlinearity, instead of linearizing the nonlinear system, a semi-infinite programming (SIP) approach is used to transform the nonlinear system into a linear one, which allows us to obtain a more accurate estimation ellipsoid. For the solution of the SIP, an ADMM algorithm is proposed to handle the state estimation constraints, and each iteration of the algorithm can be solved efficiently. Finally, the proposed filter is applied to typical numerical examples to demonstrate its effectiveness.
翻译:本文考虑了非线性动态系统( 未知但受约束的噪音) 的状态估计问题。 设定会籍过滤器( SMF) 是解决这一问题的流行算法 。 在设定会籍设置中, 我们调查国家估算需要受线性或非线性平等制约的过滤器问题 。 我们提出非线性动态系统基于乘数( ADMMM) 的 SMF 算法的一致交替方向方法 。 为了解决非线性的困难, 而不是线性化非线性系统, 使用半线性编程( SIP) 方法将非线性系统转换成线性系统, 从而使我们能够获得更准确的线性估算。 为了解决SIP, 提议采用 ADMM 算法来处理国家估算限制, 并有效地解决算法的每一次迭代法。 最后, 提议的过滤器被用于典型的数字示例, 以证明其有效性 。