A class of optimal three-weight cyclic codes of dimension 3 over any finite field was presented by Vega [Finite Fields Appl., 42 (2016) 23-38]. Shortly thereafter, Heng and Yue [IEEE Trans. Inf. Theory, 62(8) (2016) 4501-4513] generalized this result by presenting several classes of cyclic codes with either optimal three weights or a few weights. Here we present a new class of optimal three-weight cyclic codes of length $q+1$ and dimension 3 over any finite field $F_q$, and show that the nonzero weights are $q-1$, $q$, and $q+1$. We then study the dual codes in this new class, and show that they are also optimal cyclic codes of length $q+1$, dimension $q-2$, and minimum Hamming distance $4$. Lastly, as an application of the Krawtchouck polynomials, we obtain the weight distribution of the dual codes.
翻译:Vega[Finite Fields Appl., 42(2016) 23-38]介绍了关于任何有限字段的3个方面的最佳三重周期代码。随后不久,Heng 和 Yue [IEEE Trans. Inf. Theory, 62(8) & 4501-4513] 介绍了关于任何有限字段的3级最佳三重周期代码。我们在这里介绍了关于任何有限字段的3美元+1美元和3维的新型最佳三重周期代码,并表明非零重为1美元、1美元和1美元。然后我们研究了这一新类别中的双重代码,并表明它们也是长度为1美元+1美元、2美元尺寸和最低Hamming距离4美元的最佳双轨代码。最后,作为对Krawtchouck 聚nimals的应用,我们获得了双代码的重量分布。