The Stable Roommates problem involves matching a set of agents into pairs based on the agents' strict ordinal preference lists. The matching must be stable, meaning that no two agents strictly prefer each other to their assigned partners. A number of three-dimensional variants exist, in which agents are instead matched into triples. Both the original problem and these variants can also be viewed as hedonic games. We formalise a three-dimensional variant using general additively separable preferences, in which each agent provides an integer valuation of every other agent. In this variant, we show that a stable matching may not exist and that the related decision problem is NP-complete, even when the valuations are binary. In contrast, we show that if the valuations are binary and symmetric then a stable matching must exist and can be found in polynomial time. We also consider the related problem of finding a stable matching with maximum utilitarian welfare when valuations are binary and symmetric. We show that this optimisation problem is NP-hard and present a novel 2-approximation algorithm.
翻译:稳定的室友问题涉及根据代理人严格的正统偏好列表将一组物剂匹配成对。 配对必须是稳定的, 意指没有两个物剂严格地相互偏向于指定伴侣。 存在一些三维变量, 其中物剂被匹配为三重体。 原始问题和这些物剂也可以被看成是异调游戏。 我们使用一般的添加性分解偏好将三维变量正规化为三维变量, 其中每个物剂都提供对所有其他物剂的整数值。 在这个变量中, 我们显示一个稳定的配对可能不存在, 相关的决定问题可能是 NP 不完整的, 即使估值是二进制的。 相反, 我们显示, 如果估值是二进制的, 那么一个稳定的配对则必须存在, 并且可以在多元时间中找到。 我们还考虑了在估值是二进制和对称时找到一个稳定匹配值与最大功利安利的幸福相匹配的相关问题。 我们显示, 优化的问题是硬的, 并且提出了一种新型的2适应性算法 。