We introduce and analyze a numerical approximation of the porous medium equation with fractional potential pressure introduced by Caffarelli and V\'azquez: \[ \partial_t u = \nabla \cdot (u^{m-1}\nabla (-\Delta)^{-\sigma}u) \qquad \text{for} \qquad m\geq2 \quad \text{and} \quad \sigma\in(0,1). \] Our scheme is for one space dimension and positive solutions $u$. It consists of solving numerically the equation satisfied by $v(x,t)=\int_{-\infty}^xu(x,t)dx$, the quasilinear non-divergence form equation \[ \partial_t v= -|\partial_x v|^{m-1} (- \Delta)^{s} v \qquad \text{where} \qquad s=1-\sigma, \] and then computing $u=v_x$ by numerical differentiation. Using upwinding ideas in a novel way, we construct a new and simple, monotone and $L^\infty$-stable, approximation for the $v$-equation, and show local uniform convergence to the unique discontinuous viscosity solution. Using ideas from probability theory, we then prove that the approximation of $u$ converges weakly-$*$, or more precisely, up to normalization, in $C(0,T; P(\mathbb{R}))$ where $P(\mathbb{R})$ is the space of probability measures under the Rubinstein-Kantorovich metric.The analysis include also fundamental solutions where the initial data for $u$ is a Dirac mass. Numerical tests are included to confirm the results. Our scheme seems to be the first numerical scheme for this type of problems.
翻译:我们引入并分析多孔介质方程式的数字近似值, 由 Caffarelli 和 V\\ azquez 引入分数潜在压力 :\ [\ repart_ t u =\ nabla\ cdot (u\\ m-1\\ nabla (- delta)\\\\\\ sgma}u)\qqquad m\ text{ \ quad \ \ quad\ sigma\ in (0, 1, 1, t) 和正正解 $。 它包括以数字方式解决 $ (x, t)\\ int\\\\ \ \ \\ \ nablax\ \ cdxx) 的方程式所满足的方程式 。 [\ seqqqquald\ v=_ max max max max mail max max max modeal deal deal modeal demodeal modeal_ dal_ dal_ dal_ dal_ dal_ dal_ dromoudal_ dal_ dismax_ dal_ dal__ moudal_ moudal__ moudal_ dal_ moudal_ dal_ dal_ dal_ dal_ modal_____ modal_ modal_ modal_ modal_ modal_ modal_ modal_ modal_ modal_ modal_____ modal__ modal_ modal_ modal_ modal__ modal_ modal_ modal_ modal_ modal_ modal_ modal_ modal_ mod_ modal_ modal_ modal_ modal_ modal_ modal_ modal_ modal_ modal_ modal</s>