Answer Set Programming (ASP) emerged in the late 1990ies as a paradigm for Knowledge Representation and Reasoning. The attractiveness of ASP builds on an expressive high-level modeling language along with the availability of powerful off-the-shelf solving systems. While the utility of incorporating aggregate expressions in the modeling language has been realized almost simultaneously with the inception of the first ASP solving systems, a general semantics of aggregates and its efficient implementation have been long-standing challenges. Aggregates have been proposed and widely used in database systems, and also in the deductive database language Datalog, which is one of the main precursors of ASP. The use of aggregates was, however, still restricted in Datalog (by either disallowing recursion or only allowing monotone aggregates), while several ways to integrate unrestricted aggregates evolved in the context of ASP. In this survey, we pick up at this point of development by presenting and comparing the main aggregate semantics that have been proposed for propositional ASP programs. We highlight crucial properties such as computational complexity and expressive power, and outline the capabilities and limitations of different approaches by illustrative examples.


翻译:在1990年代后期,作为知识代表性和合理性范例的问答程序(ASP)出现于1990年代后期。ASP的吸引力以显性高层次的建模语言为基础,加上强大的现成解答系统的可用性。虽然在第一个ASP解答系统的启动时几乎同时实现了将综合表达形式纳入建模语言的效用,但总体的语义及其有效实施一直是长期存在的挑战。在数据库系统以及作为ASP主要前身之一的扣减数据库语言数据中,已经提出并广泛使用综合内容。然而,在Datalog中,综合内容的使用仍然受到限制(要么不允许重复,要么只允许单调汇总),而将非限制的总量纳入在ASP范围内演进的几种方法。在本次调查中,我们通过介绍和比较为Patial ASP方案提议的主要总体语义,从这一发展阶段开始。我们强调计算复杂性和明确能力等关键特性,并以示例概述不同方法的能力和局限性。

0
下载
关闭预览

相关内容

ASP是Active Server Page的缩写,意为“动态服务器页面”。ASP是微软公司开发的代替CGI脚本程序的一种应用,它可以与数据库和其它程序进行交互,是一种简单、方便的编程工具。
专知会员服务
80+阅读 · 2021年7月3日
专知会员服务
57+阅读 · 2021年1月26日
【AAAI2021】记忆门控循环网络
专知会员服务
50+阅读 · 2020年12月28日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
5+阅读 · 2019年5月5日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年11月8日
VIP会员
相关VIP内容
专知会员服务
80+阅读 · 2021年7月3日
专知会员服务
57+阅读 · 2021年1月26日
【AAAI2021】记忆门控循环网络
专知会员服务
50+阅读 · 2020年12月28日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
5+阅读 · 2019年5月5日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员