It is beneficial to develop an efficient machine-learning based method for addition using embedded hexadecimal digits. Through a comparison between human-developed machine learning model and models sampled through Neural Architecture Search (NAS) we determine an efficient approach to solve this problem with a final testing loss of 0.2937 for a human-developed model.
翻译:开发一种高效的机器学习方法,使用嵌入的十六进制数字进行添加是有益的。 通过对人开发的机器学习模型和通过神经结构搜索(NAS)取样的模型进行比较,我们决定了一种有效的方法来解决这一问题,最终测试损失0.2937美元,用于人类开发模型。