项目名称: 生物医用金属电极激光铣削-重铸加工成形及性能研究
项目编号: No.51475397
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 机械、仪表工业
项目作者: 周伟
作者单位: 厦门大学
项目金额: 85万元
中文摘要: 生物医用电极是生物电阻抗检测技术中关键传感元件,能有效提取生物体组织或器官的阻抗信息。但是传统生物医用电极却存在接触不良、电流分布不均匀、稳定性差等致命问题。本项目通过设计新型生物医用电极结构,提出利用激光铣削-重铸技术实现金属电极表面微结构阵列加工,以减少电极与人体皮肤的接触阻抗,以达到提高生物电阻抗系统检测精度的目的。项目在优化设计电极结构基础上,研究加工参数对电极表面微结构的影响机制,制定出合理的加工工艺;研究不同尺度范围下表面微结构的成形规律,揭示多场耦合作用下激光铣削-重铸加工机理;通过表面微结构的摩擦和力学性能研究,获取表面微结构与人体皮肤的匹配关系;利用对接和二/四极法进行阻抗性能测试,建立电极表面微结构阵列特征与人体皮肤接触阻抗的映射规律,并最终建立一套生物医用电极的结构设计、加工及性能测试的理论方法体系,提高我国在生物电阻抗技术中关键的电极设计与制造技术和理论研究水平。
中文关键词: 生物医用电极;激光铣削加工;表面微结构;力学性能;接触阻抗
英文摘要: Biomedical electrodes is a key sensing element for bioelectrical impedance technology, which can effectively measure the impedance information of the biological tissues or organs. However, traditional biomedical electrodes ususally have several obvious disadvantages such as bad contact status, nonuniform current distribution,and poor stability. In this project, we proposed that the laser milling-redeposit technology was employed to fabricate the metal electrode with surface microstructure array according to the optimization design of electrode structure. Then the contact impedance between electrode and skin was dramatically decreased because of surface microstructure array, so the accuracy of bioelectrical impedance system could be improved. The main research contents was as follow: Based on the optimization design of electrode structure, the effect of processing parameters on forming mechanism of microstructures on the surface of electrode was studied to obtain the reasonable processing parameters. After the surface microstructure array with different scales was observed in detail, the laser milling-redeposit processing mechanism with coupling fields was concluded. Subsequently, the matching relationship between the human skin and surface microstructure was obtained when the friction and mechanical properties of electrode was experimental investigation. Both two-electrode and four-electrode methods were used to conduct the test of impedance performance, the relationship model of surface microstructure characteristics and contact impedance was deduced. Based on above research work, the structural design, processing method and performance test methods of biomedical electrode was eventually established in order to improve the design and manufacture method as well as theoretical research level of biomedical electrode for bioelectrical impedance technology.
英文关键词: Biomedical electrode;Laser milling technology;Surface micro structure;Mechanical property;Contact impedance