In this paper, the CONFIG algorithm, a simple and provably efficient constrained global optimization algorithm, is applied to optimize the closed-loop control performance of an unknown system with unmodeled constraints. Existing Gaussian process based closed-loop optimization methods, either can only guarantee local convergence (e.g., SafeOPT), or have no known optimality guarantee (e.g., constrained expected improvement) at all, whereas the recently introduced CONFIG algorithm has been proven to enjoy a theoretical global optimality guarantee. In this study, we demonstrate the effectiveness of CONFIG algorithm in the applications. The algorithm is first applied to an artificial numerical benchmark problem to corroborate its effectiveness. It is then applied to a classical constrained steady-state optimization problem of a continuous stirred-tank reactor. Simulation results show that our CONFIG algorithm can achieve performance competitive with the popular CEI (Constrained Expected Improvement) algorithm, which has no known optimality guarantee. As such, the CONFIG algorithm offers a new tool, with both a provable global optimality guarantee and competitive empirical performance, to optimize the closed-loop control performance for a system with soft unmodeled constraints. Last, but not least, the open-source code is available as a python package to facilitate future applications.
翻译:在本文中,CONFIG算法是一种简单和可以想象的高效的全球优化算法,用于优化一个不为人知的系统,其封闭环控制性功能,这种算法是一种简单和可察觉的有限全球优化算法,用于优化一个不为人知的系统,而这种系统有未经改造的限制。现有的基于Gaussian过程的封闭环优化方法只能保证地方趋同(例如SafeOPT),或者根本没有已知的最佳性保证(例如,预期改进受到限制),而最近推出的CONFIG算法已被证明享有理论上的全球最佳性保证。在这个研究中,我们展示了CONFIG算法在应用中的有效性。这种算法首先应用于一个人为的数字基准问题,以证实其有效性。然后,它被用于一个传统的固定状态固定优化问题,即连续的混合式反应堆。模拟结果显示,我们的CONFIG算法可以取得与流行的CEI(限制预期改进)算法具有竞争力,而这种算法没有已知的最佳性保证。因此,CONFIG算法提供了一种新的工具,既具有可被证实的全球最佳性保证,又具有竞争性的经验性性性性性性性表现,可以优化为未来软件的最软化的开放-控制性软件。