Any ideal in a number field can be factored into a product of prime ideals. In this paper we study the prime ideal shortest vector problem (SVP) in the ring $ \Z[x]/(x^{2^n} + 1) $, a popular choice in the design of ideal lattice based cryptosystems. We show that a majority of rational primes lie under prime ideals admitting a polynomial time algorithm for SVP. Although the shortest vector problem of ideal lattices underpins the security of Ring-LWE cryptosystem, this work does not break Ring-LWE, since the security reduction is from the worst case ideal SVP to the average case Ring-LWE, and it is one-way.
翻译:数字领域的任何理想都可以纳入一个理想的产物中。 在本文中,我们研究最理想的最小矢量问题(SVP) $[x]/(x ⁇ 2 ⁇ n}+1]$,这是设计理想的基于拉丁拼字加密系统的流行选择。我们显示,大多数理性质是建立在最理想理想的理念之下,允许SVP采用多元时间算法。尽管最短的理想 ⁇ 量矢量问题支撑着环-LWE加密系统的安全,但这项工作并没有打破环-LWE,因为安全性降低是从最坏的情景理想SVP到平均环-LWE,而且是单向的。