We investigate the existence of approximation algorithms for maximization of submodular functions, that run in fixed parameter tractable (FPT) time. Given a non-decreasing submodular set function $v: 2^X \to \mathbb{R}$ the goal is to select a subset $S$ of $K$ elements from $X$ such that $v(S)$ is maximized. We identify three properties of set functions, referred to as $p$-separability properties, and we argue that many real-life problems can be expressed as maximization of submodular, $p$-separable functions, with low values of the parameter $p$. We present FPT approximation schemes for the minimization and maximization variants of the problem, for several parameters that depend on characteristics of the optimized set function, such as $p$ and $K$. We confirm that our algorithms are applicable to a broad class of problems, in particular to problems from computational social choice, such as item selection or winner determination under several multiwinner election systems.
翻译:我们调查是否存在用于最大限度地增加子模块函数的近似算法,这些算法在固定参数可移动时间(FPT)运行。鉴于一个非递减子模块集函数 $v: 2xx\to\mathbb{R}$,我们的目标是从美元中选择一个以美元为单位的子S美元元素,例如美元(S)美元最大化。我们确定了设定函数的三个属性,称为$p$-可分裂性属性,我们争论说,许多实际生活问题可以表现为子模块、美元可分离功能的最大化,而参数值低。我们提出了问题最小化和最大化变量的FPT近似方案,其几个参数取决于优化设定函数的特性,例如美元和美元。我们确认,我们的算法适用于广泛的一类问题,特别是计算社会选择的问题,例如多个多赢家选举制度下的项目选择或赢家决定。