Evolutionary algorithms (EAs) are general-purpose optimization algorithms, inspired by natural evolution. Recent theoretical studies have shown that EAs can achieve good approximation guarantees for solving the problem classes of submodular optimization, which have a wide range of applications, such as maximum coverage, sparse regression, influence maximization, document summarization and sensor placement, just to name a few. Though they have provided some theoretical explanation for the general-purpose nature of EAs, the considered submodular objective functions are defined only over sets or multisets. To complement this line of research, this paper studies the problem class of maximizing monotone submodular functions over sequences, where the objective function depends on the order of items. We prove that for each kind of previously studied monotone submodular objective functions over sequences, i.e., prefix monotone submodular functions, weakly monotone and strongly submodular functions, and DAG monotone submodular functions, a simple multi-objective EA, i.e., GSEMO, can always reach or improve the best known approximation guarantee after running polynomial time in expectation. Note that these best-known approximation guarantees can be obtained only by different greedy-style algorithms before. Empirical studies on various applications, e.g., accomplishing tasks, maximizing information gain, search-and-tracking and recommender systems, show the excellent performance of the GSEMO.


翻译:最近的理论研究表明,对于解决子模版优化问题类别的问题,EAs能够实现良好的近似保证,这些类别有各种各样的应用,例如,最大覆盖范围、稀小回归、影响最大化、文档总和和传感器布局,仅举几个例子。尽管它们为EAs的普通用途性质提供了一些理论解释,但所考虑的子模版目标功能仅以数组或多组来界定。为了补充这一研究,本文件研究的是将单调子模版功能最大化的问题类别,因为目标功能取决于项目的顺序。我们证明,对于以往研究过的单调子模版目标功能相对于序列的每一种类型的应用,例如:最大范围覆盖、稀小回归、影响最大化、文件总和传感器布局。尽管它们为EAs的通用功能提供了一些理论解释,但认为亚调组目标功能仅以数组或多组为基础来界定。为了补充这一研究,GEMO组织对在顺序上实现最佳近似值的功能进行了研究。我们证明,在运行单调小调小调的亚调模型应用之前,这些最能显示最先进的GISalalimal-laimal imal laimal as ex ex ex ex ex ex lappearstuping the the the the the the the the best pre prestolviolview resmoltial be supal be supal be supal be supolpalpal be supal be supal be supal be supal be supal be supal be supal be suply supal be suply suply sal be sal be sal be sal be ress be sal be sald saldaldald sald sald salds sal be sal be sal be sal be sal be sal be sal be sal be sal be supal be sal be sal be supaldal ress sal be sal be sal be sal be sal be sal be ress be sal be sal be sal be sal be sal be sal be saldal be saldals. ress. lemental be ress. ress s

0
下载
关闭预览

相关内容

专知会员服务
21+阅读 · 2021年4月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
德先生
53+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
1+阅读 · 2021年6月10日
Arxiv
0+阅读 · 2021年6月9日
Arxiv
0+阅读 · 2021年6月9日
Arxiv
5+阅读 · 2018年1月30日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
德先生
53+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员