Model protection is vital when deploying Convolutional Neural Networks (CNNs) for commercial services, due to the massive costs of training them. In this work, we propose a selective encryption (SE) algorithm to protect CNN models from unauthorized access, with a unique feature of providing hierarchical services to users. Our algorithm firstly selects important model parameters via the proposed Probabilistic Selection Strategy (PSS). It then encrypts the most important parameters with the designed encryption method called Distribution Preserving Random Mask (DPRM), so as to maximize the performance degradation by encrypting only a very small portion of model parameters. We also design a set of access permissions, using which different amounts of the most important model parameters can be decrypted. Hence, different levels of model performance can be naturally provided for users. Experimental results demonstrate that the proposed scheme could effectively protect the classification model VGG19 by merely encrypting 8% parameters of convolutional layers. We also implement the proposed model protection scheme in the denoising model DnCNN, showcasing the hierarchical denoising services
翻译:在为商业服务部署进化神经网络(CNNs)时,由于培训成本巨大,模型保护对于商业服务至关重要。在这项工作中,我们提议了选择性加密算法,以保护CNN模型不受未经授权的进入,这是向用户提供分级服务的独有特点。我们的算法首先通过拟议的概率选择战略选择重要的模型参数。然后将最重要的参数加密为设计起来的加密方法,称为分配保护随机遮罩(DPRM),以最大限度地降低性能退化,只加密非常小的一部分模型参数。我们还设计了一套访问许可,其中可以解密最重要的模型参数的不同数量。因此,可以自然地向用户提供不同水平的模型性能。实验结果表明,拟议的方案仅能加密8%的革命层参数,就能有效保护分类模型VGG19。我们还在DNNN模型解密中实施拟议的模型保护计划,显示等级解密服务。我们还在DCNN中执行拟议的模型保护计划。