Many real-world applications involve analyzing time-dependent phenomena, which are intrinsically functional---consisting of curves varying over a continuum, which is time in this case. When analyzing continuous data, functional data analysis (FDA) provides substantial benefits, such as the ability to study the derivatives and to restrict the ordering of data. However, continuous data inherently has infinite dimensions, and FDA methods often suffer from high computational costs. This is even more critical when we have new incoming data and want to update the FDA results in real-time. In this paper, we present a visual analytics approach to consecutively monitor and review the changing time-series data with a focus on identifying outliers by using FDA. To perform such an analysis while addressing the computational problem, we introduce new incremental and progressive algorithms that promptly generate the magnitude-shape (MS) plot, which reveals both the functional magnitude and shape outlyingness of time-series data. In addition, by using an MS plot in conjunction with an FDA version of principal component analysis, we enhance the analyst's ability to investigate the visually-identified outliers. We illustrate the effectiveness of our approach with three case studies using real-world and synthetic datasets.
翻译:许多现实世界应用都涉及分析基于时间的现象,这些现象在功能上是分流的,其内在功能上是由连续连续的曲线所决定的。当分析连续的数据时,功能性数据分析(FDA)提供大量的好处,例如研究衍生物和限制数据顺序的能力。然而,连续的数据具有无限的内涵,林业发展局的方法往往会受到高计算成本的影响。当我们收到新的数据并想要实时更新林业发展局的结果时,这一点就更加重要。在本文中,我们提出了一个视觉分析方法,连续监测和审查不断变化的时间序列数据,重点是利用林业发展局查明外部关系。为了在进行这种分析的同时处理计算问题,我们采用了新的渐进式和渐进式算法,以迅速生成规模形状(MS)图,它揭示了时间序列数据的功能规模和外向。此外,我们利用MS图与林业发展局的主要组成部分分析版本一起使用MS图,加强了分析员调查视觉性外部关系的能力,重点是通过使用林业发展局的方法查明外部关系。我们用三个案例研究来说明我们的方法的有效性。我们用真实世界和合成数据来说明我们的方法。