In today's scenario, imagining a world without negativity is something very unrealistic, as bad NEWS spreads more virally than good ones. Though it seems impractical in real life, this could be implemented by building a system using Machine Learning and Natural Language Processing techniques in identifying the news datum with negative shade and filter them by taking only the news with positive shade (good news) to the end user. In this work, around two lakhs datum have been trained and tested using a combination of rule-based and data driven approaches. VADER along with a filtration method has been used as an annotating tool followed by statistical Machine Learning approach that have used Document Term Matrix (representation) and Support Vector Machine (classification). Deep Learning algorithms then came into picture to make this system reliable (Doc2Vec) which finally ended up with Convolutional Neural Network(CNN) that yielded better results than the other experimented modules. It showed up a training accuracy of 96%, while a test accuracy of (internal and external news datum) above 85% was obtained.


翻译:在今天的情景中,想象一个没有负偏向的世界是非常不现实的,因为坏消息和过滤方法在病毒上比好消息传播得更多。虽然在现实生活中似乎不切实际,但可以通过建立一个系统,用机器学习和自然语言处理技术来用阴暗的阴影来识别新闻数据,并通过只将正面阴影(好消息)的新闻(Doc2Vec)给终端用户过滤这些数据来实施。在这项工作中,大约两千瓦图已经通过基于规则的方法和数据驱动的方法相结合来培训和测试。 VADER 连同过滤方法被作为一种说明工具,而统计机器学习方法则使用文件术语矩阵(代表)和支助矢量机器(分类)来跟踪。 深层次的算法随后进入了图,使这个系统变得可靠(Doc2Vec),它最终以具有比其他实验模块更好的效果的革命神经网络(CNN) 。 它显示培训准确性达到96%,同时获得了85%以上(内部和外部新闻数据)的测试精度。

4
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
深度学习搜索,Exploring Deep Learning for Search
专知会员服务
57+阅读 · 2020年5月9日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
AI科技评论
4+阅读 · 2018年8月12日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
【推荐】深度学习情感分析综述
机器学习研究会
58+阅读 · 2018年1月26日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Arxiv
5+阅读 · 2019年4月25日
Arxiv
25+阅读 · 2018年1月24日
Arxiv
5+阅读 · 2017年7月23日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
AI科技评论
4+阅读 · 2018年8月12日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
【推荐】深度学习情感分析综述
机器学习研究会
58+阅读 · 2018年1月26日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Top
微信扫码咨询专知VIP会员