We investigate the complexity of explicit construction problems, where the goal is to produce a particular object of size $n$ possessing some pseudorandom property in time polynomial in $n$. We give overwhelming evidence that $\bf{APEPP}$, defined originally by Kleinberg et al., is the natural complexity class associated with explicit constructions of objects whose existence follows from the probabilistic method, by placing a variety of such construction problems in this class. We then demonstrate that a result of Je\v{r}\'{a}bek on provability in Bounded Arithmetic, when reinterpreted as a reduction between search problems, shows that constructing a truth table of high circuit complexity is complete for $\bf{APEPP}$ under $\bf{P}^{\bf{NP}}$ reductions. This illustrates that Shannon's classical proof of the existence of hard boolean functions is in fact a $\textit{universal}$ probabilistic existence argument: derandomizing his proof implies a generic derandomization of the probabilistic method. As a corollary, we prove that $\bf{EXP}^{\bf{NP}}$ contains a language of circuit complexity $2^{n^{\Omega(1)}}$ if and only if it contains a language of circuit complexity $\frac{2^n}{2n}$. Finally, for several of the problems shown to lie in $\bf{APEPP}$, we demonstrate direct polynomial time reductions to the explicit construction of hard truth tables.
翻译:我们调查了明确的建筑问题的复杂性, 我们的目标是在时间多元化时, 产出一个大小为美元的特定物件, 拥有某种假冒财产。 我们给出了压倒性的证据, 最初由克莱伯格等人定义的 $\ bf{ APEP} 美元, 是因概率方法而存在的由概率方法决定的物体的明显构造的自然复杂性类别。 这说明香农关于存在硬布林功能的典型证据事实上是 $\ text{ r\ { r\ { a} 存在概率的典型证据: 他的证据的减少意味着在搜索问题之间进行重新解释时, 一个高电路复杂度的真相表格 $\ bf{ APEP} 在 $bf{ Päb{NP} 下是完整的。 这说明香农关于硬布林功能存在的典型证据事实上是 $\ textitalitle{ $plation} $previrontical $2} 我们证明“ rabitical r_ r_ r_ rence” lax a crual sultilation suble suble a sub subrmal se a sucilding.