We investigate the complexity of explicit construction problems, where the goal is to produce a particular object of size $n$ possessing some pseudorandom property in time polynomial in $n$. We give overwhelming evidence that $\bf{APEPP}$, defined originally by Kleinberg et al., is the natural complexity class associated with explicit constructions of objects whose existence follows from the probabilistic method, by placing a variety of such construction problems in this class. We then demonstrate that a result of Je\v{r}\'{a}bek on provability in Bounded Arithmetic, when reinterpreted as a reduction between search problems, shows that constructing a truth table of high circuit complexity is complete for $\bf{APEPP}$ under $\bf{P}^{\bf{NP}}$ reductions. This illustrates that Shannon's classical proof of the existence of hard boolean functions is in fact a $\textit{universal}$ probabilistic existence argument: derandomizing his proof implies a generic derandomization of the probabilistic method. As a corollary, we prove that $\bf{EXP}^{\bf{NP}}$ contains a language of circuit complexity $2^{n^{\Omega(1)}}$ if and only if it contains a language of circuit complexity $\frac{2^n}{2n}$. Finally, for several of the problems shown to lie in $\bf{APEPP}$, we demonstrate direct polynomial time reductions to the explicit construction of hard truth tables.


翻译:我们调查了明确的建筑问题的复杂性, 我们的目标是在时间多元化时, 产出一个大小为美元的特定物件, 拥有某种假冒财产。 我们给出了压倒性的证据, 最初由克莱伯格等人定义的 $\ bf{ APEP} 美元, 是因概率方法而存在的由概率方法决定的物体的明显构造的自然复杂性类别。 这说明香农关于存在硬布林功能的典型证据事实上是 $\ text{ r\ { r\ { a} 存在概率的典型证据: 他的证据的减少意味着在搜索问题之间进行重新解释时, 一个高电路复杂度的真相表格 $\ bf{ APEP} 在 $bf{ Päb{NP} 下是完整的。 这说明香农关于硬布林功能存在的典型证据事实上是 $\ textitalitle{ $plation} $previrontical $2} 我们证明“ rabitical r_ r_ r_ rence” lax a crual sultilation suble suble a sub subrmal se a sucilding.

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
18+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
A Sheaf-Theoretic Construction of Shape Space
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月15日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
18+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员