In this paper, we present a dynamically reconfigurable hardware accelerator called FADES (Fused Architecture for DEnse and Sparse matrices). The FADES design offers multiple configuration options that trade off parallelism and complexity using a dataflow model to create four stages that read, compute, scale and write results. FADES is mapped to the programmable logic (PL) and integrated with the TensorFlow Lite inference engine running on the processing system (PS) of a heterogeneous SoC device. The accelerator is used to compute the tensor operations, while the dynamically reconfigurable approach can be used to switch precision between int8 and float modes. This dynamic reconfiguration enables better performance by allowing more cores to be mapped to the resource-constrained device and lower power consumption compared with supporting both arithmetic precisions simultaneously. We compare the proposed hardware with a high-performance systolic architecture for dense matrices obtaining 25% better performance in dense mode with half the DSP blocks in the same technology. In sparse mode, we show that the core can outperform dense mode even at low sparsity levels, and a single-core achieves up to 20x acceleration over the software-optimized NEON RUY library.


翻译:在本文中,我们提出了一种名为FADES(Fused Architecture for DEnse and Sparse matrices)的动态可重构硬件加速器。FADES设计提供多种配置选项,通过数据流模型来创建四个阶段,分别是读取、计算、缩放和写入结果。FADES被映射到可编程逻辑(PL)并与运行在异构SoC设备的处理系统(PS)上的TensorFlow Lite推理引擎集成。加速器用于计算张量操作,而动态可重构方法可以用于在int8和浮点模式之间切换精度。这种动态重配置通过允许将更多核心映射到资源受限的设备上,从而实现更好的性能,且相比同时支持两种算术精度,可以降低功耗。我们将所提出的硬件与适用于密集矩阵的高性能收缩阵列体系结构进行对比,在相同技术下,在密集模式下获得了25%更好的性能,且使用了一半的DSP块。在稀疏模式下,我们表明该核心甚至可以在低稀疏度水平下胜过密集模式,并且单核心可以在软件优化的NEON RUY库上实现高达20倍的加速。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
122+阅读 · 2022年4月21日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
基于PyTorch/TorchText的自然语言处理库
专知
28+阅读 · 2019年4月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
AI/ML/DNN硬件加速设计怎么入门?
StarryHeavensAbove
10+阅读 · 2018年12月4日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
122+阅读 · 2022年4月21日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
基于PyTorch/TorchText的自然语言处理库
专知
28+阅读 · 2019年4月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
AI/ML/DNN硬件加速设计怎么入门?
StarryHeavensAbove
10+阅读 · 2018年12月4日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员