Deep learning has been the answer to many machine learning problems during the past two decades. However, it comes with two major constraints: dependency on extensive labeled data and training costs. Transfer learning in deep learning, known as Deep Transfer Learning (DTL), attempts to reduce such dependency and costs by reusing an obtained knowledge from a source data/task in training on a target data/task. Most applied DTL techniques are network/model-based approaches. These methods reduce the dependency of deep learning models on extensive training data and drastically decrease training costs. As a result, researchers detected Covid-19 infection on chest X-Rays with high accuracy at the beginning of the pandemic with minimal data using DTL techniques. Also, the training cost reduction makes DTL viable on edge devices with limited resources. Like any new advancement, DTL methods have their own limitations, and a successful transfer depends on some adjustments for different scenarios. In this paper, we review the definition and taxonomy of deep transfer learning and well-known methods. Then we investigate the DTL approaches by reviewing recent applied DTL techniques in the past five years. Further, we review some experimental analyses of DTLs to learn the best practice for applying DTL in different scenarios. Moreover, the limitations of DTLs (catastrophic forgetting dilemma and overly biased pre-trained models) are discussed, along with possible solutions and research trends.


翻译:深层次学习是过去二十年中许多机器学习问题的答案。然而,深层次学习是过去20年中许多机器学习问题的答案。但是,深层次学习有两个主要制约因素:依赖广泛标签的数据和培训费用。深层次学习中的学习:深层次学习中的学习,称为深层转移学习(DTL),试图通过在目标数据/任务培训中重新利用从源数据/任务获得的知识来减少这种依赖性和费用。大部分应用的DTL技术是网络/示范方法。这些方法减少了深层次学习模式对广泛培训数据的依赖,并大大减少了培训费用。结果,研究人员在流行初期就发现Covid-19胸部X射线感染了高精度的Covid-19,使用DTL技术的数据极少。此外,培训成本的降低使得DTL在边缘设备上能够使用有限的资源。与任何新的进展一样,DTL方法本身有局限性,成功的转移取决于对不同情景的调整。在本文中,我们审查深层次转移学习的定义和分类方法。然后,我们通过审查最近应用的DTL方法来研究最近应用的DTL技术,在过去五年中以最低程度的数据。此外,我们审查一些实验性分析关于DTDDL的实验性分析,在DTDDT的实验中,并研究中,在DTDTADL的实验性选择中学习了某些实验性选择。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
120+阅读 · 2022年4月21日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Arxiv
53+阅读 · 2018年12月11日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员