The purpose of this paper is to guide interpretation of the semantic privacy guarantees for some of the major variations of differential privacy, which include pure, approximate, R\'enyi, zero-concentrated, and $f$ differential privacy. We interpret privacy-loss accounting parameters, frequentist semantics, and Bayesian semantics (including new results). The driving application is the interpretation of the confidentiality protections for the 2020 Census Public Law 94-171 Redistricting Data Summary File released August 12, 2021, which, for the first time, were produced with formal privacy guarantees.
翻译:本文的目的是指导对不同隐私的一些主要差异的语义隐私权保障的解释,这些差异包括纯净、近似、R\'enyi、零集中和美元差异隐私。我们解释隐私损失会计参数、常年语义和巴伊西亚语语义(包括新结果),驱动应用是对2020年人口普查公法94-171的保密保护的解释。 2021年8月12日发布的重新划分数据摘要文件首次有正式的隐私保障。