We present the Verifee Dataset: a novel dataset of news articles with fine-grained trustworthiness annotations. We develop a detailed methodology that assesses the texts based on their parameters encompassing editorial transparency, journalist conventions, and objective reporting while penalizing manipulative techniques. We bring aboard a diverse set of researchers from social, media, and computer sciences to overcome barriers and limited framing of this interdisciplinary problem. We collect over $10,000$ unique articles from almost $60$ Czech online news sources. These are categorized into one of the $4$ classes across the credibility spectrum we propose, raging from entirely trustworthy articles all the way to the manipulative ones. We produce detailed statistics and study trends emerging throughout the set. Lastly, we fine-tune multiple popular sequence-to-sequence language models using our dataset on the trustworthiness classification task and report the best testing F-1 score of $0.52$. We open-source the dataset, annotation methodology, and annotators' instructions in full length at https://verifee.ai/research to enable easy build-up work. We believe similar methods can help prevent disinformation and educate in the realm of media literacy.
翻译:我们介绍了Verifee数据集:一套具有微小信任性说明的新版新闻文章数据集;我们开发了一套详细的方法,根据编辑透明度、记者惯例和客观报道等参数评估文本,同时惩罚操纵技术;我们让来自社会、媒体和计算机科学的各种研究人员参与进来,以克服障碍和这一跨学科问题的有限框架;我们从近60美元的捷克在线新闻来源收集了超过10 000美元的独特文章;这些文章被归类为我们提出的从完全可信的文章到操控性文章的4美元系列之一;我们制作了详细的统计和研究全集中出现的趋势;最后,我们利用我们关于信任性分类任务的数据集,微调多种流行的顺序到顺序语言模型,并报告最佳的F-1评分0.52美元;我们从https://verifee.ai/research,以及全文在https://verifee.ai/research,以方便建立工作。我们认为类似的方法可以帮助防止媒体领域的不知情和教学。