Functional causal models (fCMs) specify functional dependencies between random variables associated to the vertices of a graph. In directed acyclic graphs (DAGs), fCMs are well-understood: a unique probability distribution on the random variables can be easily specified, and a crucial graph-separation result called the d-separation theorem allows one to characterize conditional independences between the variables. However, fCMs on cyclic graphs pose challenges due to the absence of a systematic way to assign a unique probability distribution to the fCM's variables, the failure of the d-separation theorem, and lack of a generalization of this theorem that is applicable to all consistent cyclic fCMs. In this work, we develop a causal modeling framework applicable to all cyclic fCMs involving finite-cardinality variables, except inconsistent ones admitting no solutions. Our probability rule assigns a unique distribution even to non-uniquely solvable cyclic fCMs and reduces to the known rule for uniquely solvable fCMs. We identify a class of fCMs, called averagely uniquely solvable, that we show to be the largest class where the probabilities admit a Markov factorization. Furthermore, we introduce a new graph-separation property, p-separation, and prove this to be sound and complete for all consistent finite-cardinality cyclic fCMs while recovering the d-separation theorem for DAGs. These results are obtained by considering classical post-selected teleportation protocols inspired by analogous protocols in quantum information theory. We discuss further avenues for exploration, linking in particular problems in cyclic fCMs and in quantum causality.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
基于LDA的主题模型实践(三)
机器学习深度学习实战原创交流
23+阅读 · 2015年10月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
16+阅读 · 2022年5月17日
Arxiv
18+阅读 · 2021年3月16日
Optimization for deep learning: theory and algorithms
Arxiv
106+阅读 · 2019年12月19日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
基于LDA的主题模型实践(三)
机器学习深度学习实战原创交流
23+阅读 · 2015年10月12日
相关论文
Arxiv
16+阅读 · 2022年5月17日
Arxiv
18+阅读 · 2021年3月16日
Optimization for deep learning: theory and algorithms
Arxiv
106+阅读 · 2019年12月19日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员