This tutorial discusses a recently developed methodology for causal inference based on longitudinal modified treatment policies (LMTPs). LMTPs generalize many commonly used parameters for causal inference including average treatment effects, and facilitate the mathematical formalization, identification, and estimation of many novel parameters. LMTPs apply to a wide variety of exposures, including binary, multivariate, and continuous, as well as interventions that result in violations of the positivity assumption. LMTPs can accommodate time-varying treatments and confounders, competing risks, loss-to-follow-up, as well as survival, binary, or continuous outcomes. This tutorial aims to illustrate several practical uses of the LMTP framework, including describing different estimation strategies and their corresponding advantages and disadvantages. We provide numerous examples of types of research questions which can be answered within the proposed framework. We go into more depth with one of these examples -- specifically, estimating the effect of delaying intubation on critically ill COVID-19 patients' mortality. We demonstrate the use of the open source R package lmtp to estimate the effects, and we provide code on https://github.com/kathoffman/lmtp-tutorial.
翻译:暂无翻译