Lipschitz games, in which there is a limit $\lambda$ (the Lipschitz value of the game) on how much a player's payoffs may change when some other player deviates, were introduced about 10 years ago by Azrieli and Shmaya. They showed via the probabilistic method that $n$-player Lipschitz games with $m$ strategies per player have pure $\epsilon$-approximate Nash equilibria, for $\epsilon\geq\lambda\sqrt{8n\log(2mn)}$. Here we provide the first hardness result for the corresponding computational problem, showing that even for a simple class of Lipschitz games (Lipschitz polymatrix games), finding pure $\epsilon$-approximate equilibria is PPAD-complete, for suitable pairs of values $(\epsilon(n), \lambda(n))$. Novel features of this result include both the proof of PPAD hardness (in which we apply a population game reduction from unrestricted polymatrix games) and the proof of containment in PPAD (by derandomizing the selection of a pure equilibrium from a mixed one). In fact, our approach implies containment in PPAD for any class of Lipschitz games where payoffs from mixed-strategy profiles can be deterministically computed.
翻译:Lipschitz 游戏(Lipschitz games) 10年前由 Azrieli 和 Shmaya 推出的Lipschitz 游戏(Lipschitz 值) 10 年左右 Azrieli 和 Shmaya 大约10 年前由 Azrieli 和 Shmaya 推出的游戏对某个玩家的回报可能会有多大变化有限制的利普施茨 游戏(Lipschitz 游戏的利普施茨 ) 。 它们通过概率法显示, 美元玩家的利普申茨 游戏(Lipschitz 聚性游戏的策略为$epsilon$- 约合$ 美元 战略的利普辛茨 ) 纯净的美元( epsilon (n),\ lambda\ sqrlus $ ) 。 这一结果的新特点包括证明PPADAD的硬性(我们如何从一个不限量的货币游戏中选择一种不限量的混合货币游戏, ) 。