YOLOv7 surpasses all known object detectors in both speed and accuracy in the range from 5 FPS to 160 FPS and has the highest accuracy 56.8% AP among all known real-time object detectors with 30 FPS or higher on GPU V100. YOLOv7-E6 object detector (56 FPS V100, 55.9% AP) outperforms both transformer-based detector SWIN-L Cascade-Mask R-CNN (9.2 FPS A100, 53.9% AP) by 509% in speed and 2% in accuracy, and convolutional-based detector ConvNeXt-XL Cascade-Mask R-CNN (8.6 FPS A100, 55.2% AP) by 551% in speed and 0.7% AP in accuracy, as well as YOLOv7 outperforms: YOLOR, YOLOX, Scaled-YOLOv4, YOLOv5, DETR, Deformable DETR, DINO-5scale-R50, ViT-Adapter-B and many other object detectors in speed and accuracy. Moreover, we train YOLOv7 only on MS COCO dataset from scratch without using any other datasets or pre-trained weights. Source code is released in https://github.com/WongKinYiu/yolov7.
翻译:YOLOv7在速度和精确度上均超过所有已知的5个FPS至160FPS的速度和准确度的已知物体探测器,在GPU V100. YOLOv7-E6天探测器(56 FPS V100,55.9% APAP)中,在GPU V100. 30个FPS或以上的所有已知实时物体探测器中,YOLOv7-E6天天探测器(56 FPS V100,55FPS V100.56.YOLOv7-E6天天天天探测器(56 FPSV100,55.56FPSV100,55.9% AP)比基于变压器的SWWIN-L Cascard-L Cass-M-CNNN(9.2 FPS APS A100,53.53.9% AP)的速度和准确度超过所有已知的已知的物体探测器,在速度和准确度范围从5PPS-VPS A100,551%的已知X-MYT-A-A-A-A-ADARC-B和许多其他物体数据序列,Y-OFS-S-SUFLUFLULU、其他数据系统、其他系统、其他数据系统、其他数据系统、SUFLUFS-S-S-S-S-S-S-SUFSUFS-S-S-S-S-S-S-S、其他数据系统、其他数据、S-SUDS-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-SULIS、AS、S-S-S-S-SUFL、S-S-S、S、其他数据、S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S、