We generalize quasi-arithmetic means beyond scalars by considering the gradient map of a Legendre type real-valued function. The gradient map of a Legendre type function is proven strictly comonotone with a global inverse. It thus yields a generalization of strictly mononotone and differentiable functions generating scalar quasi-arithmetic means. Furthermore, the Legendre transformation gives rise to pairs of dual quasi-arithmetic averages via the convex duality. We study the invariance and equivariance properties under affine transformations of quasi-arithmetic averages via the lens of dually flat spaces of information geometry. We show how these quasi-arithmetic averages are used to express points on dual geodesics and sided barycenters in the dual affine coordinate systems. We then consider quasi-arithmetic mixtures and describe several parametric and non-parametric statistical models which are closed under the quasi-arithmetic mixture operation.
翻译:我们通过考虑图伦卓型实际价值函数的梯度图,将准定量手段普遍化,超越标度。图伦卓型函数的梯度图被证明为完全的共聚物,具有全球反向。因此,它可以将严格的单质和可区分功能的纯单质和可区分功能普遍化,产生等离子准定量手段。此外,图伦形变异通过等离子双倍性生成双对子半定量平均值。我们通过双平信息几何空间的透镜,研究准定量平均值在亲近性变异下的异性和不均匀性。我们展示了这些准均值平均数如何用于表达双向大地测量仪和双向侧侧边点。我们然后考虑准定量混合物,并描述在准定量混合物操作下封闭的若干对称和非对称统计模型。