Super-resolution (SR) aims to increase the resolution of imagery. Applications include security, medical imaging, and object recognition. We propose a deep learning-based SR system that takes a hexagonally sampled low-resolution image as an input and generates a rectangularly sampled SR image as an output. For training and testing, we use a realistic observation model that includes optical degradation from diffraction and sensor degradation from detector integration. Our SR approach first uses non-uniform interpolation to partially upsample the observed hexagonal imagery and convert it to a rectangular grid. We then leverage a state-of-the-art convolutional neural network (CNN) architecture designed for SR known as Residual Channel Attention Network (RCAN). In particular, we use RCAN to further upsample and restore the imagery to produce the final SR image estimate. We demonstrate that this system is superior to applying RCAN directly to rectangularly sampled LR imagery with equivalent sample density. The theoretical advantages of hexagonal sampling are well known. However, to the best of our knowledge, the practical benefit of hexagonal sampling in light of modern processing techniques such as RCAN SR is heretofore untested. Our SR system demonstrates a notable advantage of hexagonally sampled imagery when employing a modified RCAN for hexagonal SR.


翻译:超分辨率(SR)的目的是提高图像的分辨率。应用包括安全、医疗成像和对象识别。我们提出一个基于深深深学习的低分辨率图像样本作为输入,并生成一个矩形抽样SR图像作为输出。关于培训和测试,我们使用一个现实的观测模型,其中包括来自分解的光降解和来自探测器集成的传感器降解。我们的SR方法首先使用非统一的内插来部分采集观测到的六边形图像并将其转换成矩形网格。然后我们利用一个为斯洛伐克共和国设计的、称为残余通道关注网络(RCAN)的先进电动神经网络(CNN)结构。特别是,我们利用RCAN来进一步增殖并恢复图像以生成最后的SR图像估计值。我们证明,这个系统优于直接将RCAN用于具有同等样本密度的矩形抽样LM图像中。六边取样的理论优势是众所周知的。然而,我们所了解的最先进的SRNCAN图像样本的先进性优势是,当我们将RCAN图像用于最新的RCAN取样系统时,我们将其的显著的六边光学样品用于对RCAN的升级。

0
下载
关闭预览

相关内容

图像超分辨率(SR)是提高图像分辨率的一类重要的图像处理技术以及计算机视觉中的视频。
专知会员服务
28+阅读 · 2021年8月2日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
149+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
已删除
将门创投
14+阅读 · 2019年5月29日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
深度学习医学图像分析文献集
机器学习研究会
17+阅读 · 2017年10月13日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2022年1月5日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
Residual Policy Learning
Arxiv
4+阅读 · 2018年12月15日
Image Captioning based on Deep Reinforcement Learning
Learning to Importance Sample in Primary Sample Space
VIP会员
相关资讯
已删除
将门创投
14+阅读 · 2019年5月29日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
深度学习医学图像分析文献集
机器学习研究会
17+阅读 · 2017年10月13日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员