We study the approximate state preparation problem on noisy intermediate-scale quantum (NISQ) computers by applying a genetic algorithm to generate quantum circuits for state preparation. The algorithm can account for the specific characteristics of the physical machine in the evaluation of circuits, such as the native gate set and qubit connectivity. We use our genetic algorithm to optimize the circuits provided by the low-rank state preparation algorithm introduced by Araujo et al., and find substantial improvements to the fidelity in preparing Haar random states with a limited number of CNOT gates. Moreover, we observe that already for a 5-qubit quantum processor with limited qubit connectivity and significant noise levels (IBM Falcon 5T), the maximal fidelity for Haar random states is achieved by a short approximate state preparation circuit instead of the exact preparation circuit. We also present a theoretical analysis of approximate state preparation circuit complexity to motivate our findings. Our genetic algorithm for quantum circuit discovery is freely available at https://github.com/beratyenilen/qc-ga .
翻译:我们通过应用遗传算法生成量子电路来研究在困难中间规模的噪声量子计算机上近似状态准备问题。该算法可以考虑物理机器在电路评估中的特定特性,如本机门集和量子比特连接。我们使用我们的遗传算法来优化Araujo等人提出的低秩状态准备算法所提供的电路,并发现在使用有限数量的CNOT门预备Haar随机状态时,保真度有了实质性的提高。此外,我们观察到,即使对于连接有限且存在显著噪声水平的5量子比特的量子处理器(IBM Falcon 5T),最大的Haar随机状态保真度也是通过短的近似状态准备电路而不是精确准备电路实现的。我们还提出了近似状态准备电路复杂性的理论分析,以支持我们的发现。我们用于量子电路发现的遗传算法可以在 https://github.com/beratyenilen/qc-ga 免费获得。