One hidden yet important issue for developing neural network potentials (NNPs) is the choice of training algorithm. Here we compare the performance of two popular training algorithms, the adaptive moment estimation algorithm (Adam) and the extended Kalman filter algorithm (EKF), using the Behler-Parrinello neural network (BPNN) and two publicly accessible datasets of liquid water. It is found that NNPs trained with EKF are more transferable and less sensitive to the value of the learning rate, as compared to Adam. In both cases, error metrics of the test set do not always serve as a good indicator for the actual performance of NNPs. Instead, we show that their performance correlates well with a Fisher information based similarity measure.


翻译:开发神经网络潜力(NNPs)的一个隐藏但重要的问题是培训算法的选择。 我们在这里比较两种通用培训算法的性能,即适应性瞬间估计算法(Adam)和延长的卡尔曼过滤算法(EKF),使用Behler-Parrinello神经网络(BPNN)和两个可公开查阅的液体水数据集,发现与Adam相比,接受过EKF培训的NNPs更具有可转移性,对学习率值的敏感度更低。 在这两种情况下,测试组的误差指标并不总是作为NNPs实际性能的良好指标。 相反,我们表明其性能与基于渔业信息的类似性衡量标准密切相关。

0
下载
关闭预览

相关内容

专知会员服务
77+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【干货书】'Mastering Go 第二版中文版',143页pdf
专知会员服务
48+阅读 · 2020年11月1日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
专知会员服务
166+阅读 · 2020年7月27日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
已删除
将门创投
5+阅读 · 2019年10月29日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年10月29日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
8+阅读 · 2021年1月28日
Arxiv
3+阅读 · 2018年8月17日
VIP会员
相关VIP内容
专知会员服务
77+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【干货书】'Mastering Go 第二版中文版',143页pdf
专知会员服务
48+阅读 · 2020年11月1日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
专知会员服务
166+阅读 · 2020年7月27日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
相关资讯
已删除
将门创投
5+阅读 · 2019年10月29日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员