3D hand pose estimation from RGB images suffers from the difficulty of obtaining the depth information. Therefore, a great deal of attention has been spent on estimating 3D hand pose from 2D hand joints. In this paper, we leverage the advantage of spatial-temporal Graph Convolutional Neural Networks and propose LG-Hand, a powerful method for 3D hand pose estimation. Our method incorporates both spatial and temporal dependencies into a single process. We argue that kinematic information plays an important role, contributing to the performance of 3D hand pose estimation. We thereby introduce two new objective functions, Angle and Direction loss, to take the hand structure into account. While Angle loss covers locally kinematic information, Direction loss handles globally kinematic one. Our LG-Hand achieves promising results on the First-Person Hand Action Benchmark (FPHAB) dataset. We also perform an ablation study to show the efficacy of the two proposed objective functions.


翻译:对 RGB 图像的 3D 手势估计很难获得深度信息。 因此, 大量注意力都花在了估算 2D 手关节的 3D 手姿势上。 在本文中, 我们利用空间- 时图进动神经网络的优势, 并提议3D 手势的强力方法 LG-Hand 进行3D 显示估计。 我们的方法将空间和时间的依存都纳入一个单一的过程。 我们争论说, 运动信息起着重要作用, 有助于3D 手的性能。 因此, 我们引入了两个新的目标功能, 即 角和方向损失, 以考虑手动结构 。 在 Agle 损失涵盖本地运动信息的同时, 方向损失处理全球运动信息 。 我们的 LG-Hand 在第一手行动基准( FPHAB) 数据集上取得了可喜的结果 。 我们还进行了一项对比研究, 以显示两个拟议目标功能的功效 。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
8+阅读 · 2009年12月31日
Arxiv
27+阅读 · 2020年12月24日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Arxiv
18+阅读 · 2020年10月9日
Reasoning on Knowledge Graphs with Debate Dynamics
Arxiv
14+阅读 · 2020年1月2日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
8+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员