Forecasting the particulate matter (PM) concentration in South Korea has become urgently necessary owing to its strong negative impact on human life. In most statistical or machine learning methods, independent and identically distributed data, for example, a Gaussian distribution, are assumed; however, time series such as air pollution and weather data do not meet this assumption. In this study, the maximum correntropy criterion for regression (MCCR) loss is used in an analysis of the statistical characteristics of air pollution and weather data. Rigorous seasonality adjustment of the air pollution and weather data was performed because of their complex seasonality patterns and the heavy-tailed distribution of data even after deseasonalization. The MCCR loss was applied to multiple models including conventional statistical models and state-of-the-art machine learning models. The results show that the MCCR loss is more appropriate than the conventional mean squared error loss for forecasting extreme values.


翻译:预测韩国颗粒物浓度(PM)由于对人类生命的强烈负面影响而变得迫切需要,在大多数统计或机器学习方法中,假定了独立和同样分布的数据,例如高山分布;然而,空气污染和天气数据等时间序列不符合这一假设,在这项研究中,利用回归损失的最大可转性标准来分析空气污染和天气数据的统计特征。空气污染和天气数据的严格季节性调整是由于其复杂的季节性模式和即使在淡季化后数据也大量散散发。中子辐射损失被用于多种模型,包括传统统计模型和最新机器学习模型。结果显示,中子辐射损失比常规平均平方错误损失更适合预测极端价值。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
专知会员服务
115+阅读 · 2019年12月24日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
已删除
将门创投
5+阅读 · 2019年4月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Forecasting: theory and practice
Arxiv
1+阅读 · 2021年10月22日
Arxiv
0+阅读 · 2021年10月21日
Arxiv
0+阅读 · 2021年10月18日
VIP会员
相关资讯
已删除
将门创投
5+阅读 · 2019年4月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Top
微信扫码咨询专知VIP会员