Time series is a special type of sequence data, a set of observations collected at even time intervals and ordered chronologically. Existing deep learning techniques use generic sequence models (e.g., recurrent neural network, Transformer model, or temporal convolutional network) for time series analysis, which ignore some of its unique properties. In particular, three components characterize time series: trend, seasonality, and irregular components, and the former two components enable us to perform forecasting with reasonable accuracy. Other types of sequence data do not have such characteristics. Motivated by the above, in this paper, we propose a novel neural network architecture that conducts sample convolution and interaction for temporal modeling and apply it for the time series forecasting problem, namely \textbf{SCINet}. Compared to conventional dilated causal convolution architectures, the proposed downsample-convolve-interact architecture enables multi-resolution analysis besides expanding the receptive field of the convolution operation, which facilitates extracting temporal relation features with enhanced predictability. Experimental results show that SCINet achieves significant prediction accuracy improvement over existing solutions across various real-world time series forecasting datasets.
翻译:时间序列是一种特殊的序列数据类型,这是在甚至时间间隔和按时间顺序排列的时间间隔中收集的一套观测数据。现有的深层学习技术使用通用序列模型(例如经常性神经网络、变异模型或时变网络)进行时间序列分析,这些模型忽视了其某些独特特性。特别是,三个组成部分是时间序列的特征:趋势、季节性和不规则组成部分,以及前两个组成部分使我们能够以合理的准确性进行预测。其他类型的序列数据没有这样的特征。受上述因素的驱动,在本文件中,我们提出一个新的神经网络结构,为时间模型进行抽样演化和互动,并将其应用于时间序列预测问题,即:\textbf{SCINet}。与常规的多动性因果关系结构相比,拟议的下沉变-相相互作用结构除了扩大演算操作的容容领域外,还能进行多解析分析,因为后者有助于提取时间关系特征,提高可预测性。实验结果显示,SCINet在现实世界不同时间序列的现有解决方案中实现了显著的预测准确性改进。