Time series forecasting is a crucial task in machine learning, as it has a wide range of applications including but not limited to forecasting electricity consumption, traffic, and air quality. Traditional forecasting models rely on rolling averages, vector auto-regression and auto-regressive integrated moving averages. On the other hand, deep learning and matrix factorization models have been recently proposed to tackle the same problem with more competitive performance. However, one major drawback of such models is that they tend to be overly complex in comparison to traditional techniques. In this paper, we report the results of prominent deep learning models with respect to a well-known machine learning baseline, a Gradient Boosting Regression Tree (GBRT) model. Similar to the deep neural network (DNN) models, we transform the time series forecasting task into a window-based regression problem. Furthermore, we feature-engineered the input and output structure of the GBRT model, such that, for each training window, the target values are concatenated with external features, and then flattened to form one input instance for a multi-output GBRT model. We conducted a comparative study on nine datasets for eight state-of-the-art deep-learning models that were presented at top-level conferences in the last years. The results demonstrate that the window-based input transformation boosts the performance of a simple GBRT model to levels that outperform all state-of-the-art DNN models evaluated in this paper.


翻译:在机器学习中,时间序列预测是一项关键的任务,因为其应用范围广泛,包括但不限于预测电力消耗、交通和空气质量。传统预测模型依靠滚动平均数、矢量自动反向和自动反向综合移动平均数。另一方面,最近提出了深层次学习和矩阵因素化模型,以解决同样的问题,提高业绩竞争力。然而,这些模型的一个主要缺点是,它们往往与传统技术相比过于复杂。在本文中,我们报告了在众所周知的机器学习基线、 " 渐进式推进回溯树 " (GRT) 模型方面突出的深层次学习模型的结果。与深层神经网络(DNNN)模型相似,我们把时间序列预测任务转化为基于窗口的回归问题。此外,我们根据特征设计了GBRT模型的投入和产出结构,因此,每个培训窗口的目标值都与外部特征相融合,然后被固定为多输出的GBRT纸型模型(GRT)的 " 渐进式推进树 " 模型(GBRT)模型) 。我们在9年的深度进化进化会议中进行了一项比较研究,在8年的进取结果上展示了所有状态,在8年的进取模式中展示了8年的最高进式。

2
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【Google-BryanLim等】可解释深度学习时序预测
专知会员服务
61+阅读 · 2021年12月19日
【Cell】神经算法推理,Neural algorithmic reasoning
专知会员服务
28+阅读 · 2021年7月16日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
3+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
算法|随机森林(Random Forest)
全球人工智能
3+阅读 · 2018年1月8日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Arxiv
35+阅读 · 2021年1月27日
Financial Time Series Representation Learning
Arxiv
10+阅读 · 2020年3月27日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
3+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
算法|随机森林(Random Forest)
全球人工智能
3+阅读 · 2018年1月8日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Top
微信扫码咨询专知VIP会员