Blood pressure (BP) is one of the most influential bio-markers for cardiovascular diseases and stroke; therefore, it needs to be regularly monitored to diagnose and prevent any advent of medical complications. Current cuffless approaches to continuous BP monitoring, though non-invasive and unobtrusive, involve explicit feature engineering surrounding fingertip Photoplethysmogram (PPG) signals. To circumvent this, we present an end-to-end deep learning solution, BP-Net, that uses PPG waveform to estimate Systolic BP (SBP), Mean Average Pressure (MAP), and Diastolic BP (DBP) through intermediate continuous Arterial BP (ABP) waveform. Under the terms of the British Hypertension Society (BHS) standard, BP-Net achieves Grade A for DBP and MAP estimation and Grade B for SBP estimation. BP-Net also satisfies Advancement of Medical Instrumentation (AAMI) criteria for DBP and MAP estimation and achieves Mean Absolute Error (MAE) of 5.16 mmHg and 2.89 mmHg for SBP and DBP, respectively. Further, we establish the ubiquitous potential of our approach by deploying BP-Net on a Raspberry Pi 4 device and achieve 4.25 ms inference time for our model to translate the PPG waveform to ABP waveform.
翻译:血液压力(BP)是心血管疾病和中风最有影响力的生物标志之一;因此,需要定期监测血压(BP),以诊断和预防出现任何医疗并发症。目前对BP连续连续连续BP(ABP)波形的无袖式连续监测方法,尽管不是侵入性和非侵扰性,但涉及指尖光谱图信号的清晰特征工程。为绕开这一步,我们提出了一个端至端深层学习解决方案,即BPP-Net,它使用PPPG波形波形来估计Systolic BP(SB)、平均压力(MAP)和 Diastolicle BP(DBP)波形(DBP)的中间连续连续波形波形。根据英国超常学会(BHS)标准,BP-Net为DBP和MA光谱图(PPP)的A级和BPA级图(BP)和DBPM 4型波形波形波形波形的BS,我们通过BBP4波形的BF和D波状的4波形模型,在4波状上进一步建立了我们BBP-BFM-BF的MF的MFM-FFFMFFF 的模型,我们的潜力。