In this paper, a machine learning based approach is introduced to estimate Pendubot angular position from its captured images. Initially, a baseline algorithm is introduced to estimate the angle using conventional image processing technique. The baseline algorithm performs well for the cases that the Pendubot is not moving fast. However, when moving quickly due to a free fall, the Pendubot appears as a blurred object in the captured image in a way that the baseline algorithm fails to estimate the angle. Consequently, a Deep Neural Network (DNN) based algorithm is introduced to cope with this challenge. The approach relies on the concept of transfer learning to allow the training of the DNN on a very small fine-tuning dataset. The base algorithm is used to create the ground truth labels of the fine-tuning dataset. Experimental results on the held-out evaluation set show that the proposed approach achieves a median absolute error of 0.02 and 0.06 degrees for the sharp and blurry images respectively.
翻译:在本文中,采用了基于机器学习的方法从所摄图像中估计彭杜博特角位置。 最初, 采用了基线算法来使用常规图像处理技术来估计角度。 基线算法对于Pendubot 移动速度不快的情况效果良好。 但是, 当由于自由下降而快速移动时, Pendubot 在所捕捉到的图像中作为一个模糊对象出现, 使基线算法无法估计角度。 因此, 引入了基于深神经网络的算法来应对这一挑战。 这种方法依靠转移学习的概念, 以便能够对 DNN 进行非常小的微调数据集的培训。 基算法用来创建微调数据集的地面真实标志。 悬停评价集的实验结果显示, 拟议的方法在锐利和模糊图像上分别达到0.02度和0.06度的中位绝对误差 。