A neural artistic style transformation (NST) model can modify the appearance of a simple image by adding the style of a famous image. Even though the transformed images do not look precisely like artworks by the same artist of the respective style images, the generated images are appealing. Generally, a trained NST model specialises in a style, and a single image represents that style. However, generating an image under a new style is a tedious process, which includes full model training. In this paper, we present two methods that step toward the style image independent neural style transfer model. In other words, the trained model could generate semantically accurate generated image under any content, style image input pair. Our novel contribution is a unidirectional-GAN model that ensures the Cyclic consistency by the model architecture.Furthermore, this leads to much smaller model size and an efficient training and validation phase.
翻译:神经艺术风格转型模式( NST) 可以通过添加著名图像的风格来改变简单图像的外观。 尽管被改造的图像看起来并不完全像相同风格图像艺术家的艺术作品, 所生成的图像却具有吸引力。 一般来说, 受过培训的神经艺术风格转型模式( NST) 模式是一种风格, 而单一图像代表了这种风格。 然而, 在新风格下生成图像是一个乏味的过程, 其中包括完整的模型培训。 在本文中, 我们展示了两种方法, 一种是走向风格图像独立神经风格传输模式的转变模式。 换句话说, 受过培训的模型可以在任何内容、 风格图像输入配对下生成精度准确的图像。 我们的新作品是一种单向型- GAN 模式, 以确保模型结构的网络一致性。 此外, 这导致模型规模小得多, 以及一个高效的培训和验证阶段 。