The idea of coded caching for content distribution networks was introduced by Maddah-Ali and Niesen, who considered the canonical $(N, K)$ cache network in which a server with $N$ files satisfy the demands of $K$ users (equipped with independent caches of size $M$ each). Among other results, their work provided a characterization of the exact rate memory tradeoff for the problem when $M\geq\frac{N}{K}(K-1)$. In this paper, we improve this result for large caches with $M\geq \frac{N}{K}(K-2)$. For the case $\big\lceil\frac{K+1}{2}\big\rceil\leq N \leq K$, we propose a new coded caching scheme, and derive a matching lower bound to show that the proposed scheme is optimal. This extends the characterization of the exact rate memory tradeoff to the case $M\geq \frac{N}{K}\Big(K-2+\frac{(K-2+1/N)}{(K-1)}\Big)$. For the case $1\leq N\leq \big\lceil\frac{K+1}{2}\big\rceil$, we derive a new lower bound, which demonstrates that the scheme proposed by Yu et al. is optimal and thus extend the characterization of the exact rate memory tradeoff to the case $M\geq \frac{N}{K}(K-2)$.
翻译:Maddah- Ali 和 Niesen 提出了内容发布网络的编码缓存概念 。 Maddah- Ali 和 Niesen 考虑了 美元( N, K) 的缓存网络, 其中, 一个带有 美元文件的服务器能够满足 美元用户的需求( 各自安装了 美元大小的独立缓存 ) 。 除其他结果外, 他们的工作为当$M\ gq\ frac{ N ⁇ K} (K-1) 时的问题提供了精确速率内存权衡的特性。 在本文中, 我们用 $M\ gqqq {Q} 和 美元( K-2) 来改进这个大型缓存的特性。 对于 $\ gleg\ lcel\ frac{ K} (K) 的服务器, 我们提出了一个新的编码缓存计划, 并得出一个更低的缩放, 以显示 $M\\\\\ qqqq 和 leq_\ k 美元 的精确度交易交易量, 将新的交易率 递增一美元。