Grammar-Guided Genetic Programming (GGGP) employs a variety of insights from evolutionary theory to autonomously design solutions for a given task. Recent insights from evolutionary biology can lead to further improvements in GGGP algorithms. In this paper, we apply principles from the theory of Facilitated Variation and knowledge about heterogeneous mutation rates and mutation effects to improve the variation operators. We term this new method of variation Facilitated Mutation (FM). We test FM performance on the evolution of neural network optimizers for image classification, a relevant task in evolutionary computation, with important implications for the field of machine learning. We compare FM and FM combined with crossover (FMX) against a typical mutation regime to assess the benefits of the approach. We find that FMX in particular provides statistical improvements in key metrics, creating a superior optimizer overall (+0.48\% average test accuracy), improving the average quality of solutions (+50\% average population fitness), and discovering more diverse high-quality behaviors (+400 high-quality solutions discovered per run on average). Additionally, FM and FMX can reduce the number of fitness evaluations in an evolutionary run, reducing computational costs in some scenarios.
翻译:从进化理论到自主设计特定任务的解决办法(GGGGGP),运用了从进化理论到自主设计解决方案等各种洞察力。进化生物学的最近洞察力可以进一步改善GGGP算法。在本文中,我们应用了促进变异率和变异效应知识理论的原则来改善变异操作者。我们用这种新的变异促进变异法(FM)来形容这种新的变异方法(FM)。我们在进化计算中测试神经网络优化器的演进的调频性能,这是进化计算中的一项相关任务,对机器学习领域具有重要影响。我们将调频和调频与典型的交叉突变制度(FMX)作比较,以评估该方法的效益。我们发现,FMX特别提供了关键指标的统计改进,创造了超强的优化总体(+0.48 ⁇ 平均测试精度),提高了解决方案的平均质量(+50 ⁇ 平均人口健康),并发现了更多样化的高质量行为(每运行一次平均发现的高品质解决方案)。此外,调频和调频X可减少进化和调频X的计算成本。