We propose an algorithm to solve a class of bi-level optimization problems using only first-order information. In particular, we focus on a class where the inner minimization has unique solutions. Unlike contemporary algorithms, our algorithm does not require the use of an oracle estimator for the gradient of the bi-level objective or an approximate solver for the inner problem. Instead, we alternate between descending on the inner problem using na\"ive optimization methods and descending on the upper-level objective function using specially constructed gradient estimators. We provide non-asymptotic convergence rates to stationary points of the bi-level objective in the absence of convexity of the closed-loop function and further show asymptotic convergence to only local minima of the bi-level problem. The approach is inspired by ideas from the literature on two-timescale stochastic approximation algorithms.
翻译:我们建议一种算法,只使用一阶信息来解决一类双层优化问题。 特别是, 我们侧重于一个内部最小化有独特解决方案的类别。 与当代算法不同, 我们的算法并不要求使用双层目标梯度的甲骨文估计符或内部问题近似解答器。 相反, 我们使用“ NA” 的“ ive优化方法”, 在内部问题下沉之间, 在使用特别构造的梯度估计符的上层目标函数下沉之间, 我们为双层目标的固定点提供非不方便的趋同率, 在闭环函数没有共性的情况下, 我们为双层目标的固定点提供非方便的趋同率, 并进一步显示仅与本地双层问题微型值的交融。 这种方法受关于两时级随机随机近比算法的文献想法的启发。