In the context of epidemiology, policies for disease control are often devised through a mixture of intuition and brute-force, whereby the set of logically conceivable policies is narrowed down to a small family described by a few parameters, following which linearization or grid search is used to identify the optimal policy within the set. This scheme runs the risk of leaving out more complex (and perhaps counter-intuitive) policies for disease control that could tackle the disease more efficiently. In this article, we use techniques from convex optimization theory and machine learning to conduct optimizations over disease policies described by hundreds of parameters. In contrast to past approaches for policy optimization based on control theory, our framework can deal with arbitrary uncertainties on the initial conditions and model parameters controlling the spread of the disease, and stochastic models. In addition, our methods allow for optimization over policies which remain constant over weekly periods, specified by either continuous or discrete (e.g.: lockdown on/off) government measures. We illustrate our approach by minimizing the total time required to eradicate COVID-19 within the Susceptible-Exposed-Infected-Recovered (SEIR) model proposed by Kissler \emph{et al.} (March, 2020).


翻译:在流行病学背景下,疾病控制政策往往是通过直觉和强力的结合来制定的,根据这种结合,在逻辑上可以想象的一套政策被缩小到几个参数描述的小型家庭,然后是线性搜索或网格搜索,以确定一套最优的政策。这个计划有可能使更复杂的(或许是反直觉的)疾病控制政策被抛在一边,从而更有效地应对疾病。在本条中,我们使用来自顺方优化理论和机器学习的技术,对数百个参数描述的疾病政策进行优化。与以往基于控制理论的政策优化方法相比,我们的框架可以处理控制疾病蔓延的初始条件和模型参数以及随机模型的任意不确定性。此外,我们的方法允许对每周保持不变的政策进行优化,这些政策由连续或离散的政府措施(例如:锁定/关闭)具体规定。我们通过最大限度地缩短在可感知的受感染-受感染-受感染(SEI) 2020年(SEI) 3月{阿尔姆雷特) 提议的模式(SEIRI) 来说明我们的方法。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年11月22日
Arxiv
0+阅读 · 2021年11月22日
Arxiv
0+阅读 · 2021年11月21日
Arxiv
0+阅读 · 2021年11月21日
Arxiv
38+阅读 · 2021年8月31日
Arxiv
11+阅读 · 2021年2月17日
A Modern Introduction to Online Learning
Arxiv
20+阅读 · 2019年12月31日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员