With the rapid development of artificial intelligence and the advent of the 5G era, deep learning has received extensive attention from researchers. Broad Learning System (BLS) is a new deep learning model proposed recently, which shows its effectiveness in many fields, such as image recognition and fault detection. However, the training process still requires vast computations, and therefore cannot be accomplished by some resource-constrained devices. To solve this problem, the resource-constrained device can outsource the BLS algorithm to cloud servers. Nevertheless, some security challenges also follow with the use of cloud computing, including the privacy of the data and the correctness of returned results. In this paper, we propose a secure, efficient, and verifiable outsourcing algorithm for BLS. This algorithm not only improves the efficiency of the algorithm on the client but also ensures that the clients sensitive information is not leaked to the cloud server. In addition, in our algorithm, the client can verify the correctness of returned results with a probability of almost 1. Finally, we analyze the security and efficiency of our algorithm in theory and prove our algorithms feasibility through experiments.


翻译:随着人工智能的迅速发展以及5G时代的到来,深层次的学习得到了研究人员的广泛关注。宽广的学习系统(BLS)是最近提出的一个新的深层次学习模式,它展示了它在图像识别和发现错误等许多领域的有效性。然而,培训过程仍然需要大量计算,因此无法用一些资源限制的装置完成。解决这个问题,资源限制的装置可以将BLS算法外包给云服务器。然而,在使用云计算时也随之出现一些安全挑战,包括数据的隐私和返回结果的正确性。在本文中,我们建议为BLS提出一种安全、高效和可核查的外包算法。这种算法不仅提高了客户算法的效率,而且还确保客户敏感信息不会泄漏到云服务器。此外,在我们算法中,客户可以核实返回结果的正确性,几乎1。最后,我们分析我们的算法在理论上的安全和效率,并通过实验证明我们的算法的可行性。

0
下载
关闭预览

相关内容

专知会员服务
118+阅读 · 2019年12月24日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
155+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年3月8日
Arxiv
0+阅读 · 2021年3月5日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员