Modern deep neural networks struggle to transfer knowledge and generalize across domains when deploying to real-world applications. Domain generalization (DG) aims to learn a universal representation from multiple source domains to improve the network generalization ability on unseen target domains. Previous DG methods mostly focus on the data-level consistency scheme to advance the generalization capability of deep networks, without considering the synergistic regularization of different consistency schemes. In this paper, we present a novel Hierarchical Consistency framework for Domain Generalization (HCDG) by ensembling Extrinsic Consistency and Intrinsic Consistency. Particularly, for Extrinsic Consistency, we leverage the knowledge across multiple source domains to enforce data-level consistency. Also, we design a novel Amplitude Gaussian-mixing strategy for Fourier-based data augmentation to enhance such consistency. For Intrinsic Consistency, we perform task-level consistency for the same instance under the dual-task form. We evaluate the proposed HCDG framework on two medical image segmentation tasks, i.e., optic cup/disc segmentation on fundus images and prostate MRI segmentation. Extensive experimental results manifest the effectiveness and versatility of our HCDG framework. Code will be available once accept.
翻译:现代深层神经网络在部署到现实世界应用时,努力转让知识和在各个领域推广知识。常规通用(DG)的目的是从多个来源领域学习普遍代表性,以提高在无形目标领域的网络普及能力。以前的DG方法主要侧重于数据级一致性计划,以提高深层网络的普遍化能力,而没有考虑不同一致性计划的协同正规化。在本文件中,我们提出了一个新的等级一致性框架,通过结合极端主义一致性和内在一致性,将总体化(HCDG)纳入到现实世界应用中。特别是,为了极端一致性,我们利用多种来源领域的知识,加强数据级的一致性。此外,我们为四级基于数据增强能力设计了一个全新的宽度混合战略,以加强这种一致性。关于内在一致性,我们通过将双重任务形式为同一领域执行任务层面的一致性。我们评估了拟议的HCDG框架,涉及两个医学图像分割任务,即快速一致,即高清晰度、高端数据格式框架,将一次性地、高端数据库、高端数据格式。