Methods based on Denoising Diffusion Probabilistic Models (DDPM) became a ubiquitous tool in generative modeling. However, they are mostly limited to Gaussian and discrete diffusion processes. We propose Star-Shaped Denoising Diffusion Probabilistic Models (SS-DDPM), a model with a non-Markovian diffusion-like noising process. In the case of Gaussian distributions, this model is equivalent to Markovian DDPMs. However, it can be defined and applied with arbitrary noising distributions, and admits efficient training and sampling algorithms for a wide range of distributions that lie in the exponential family. We provide a simple recipe for designing diffusion-like models with distributions like Beta, von Mises--Fisher, Dirichlet, Wishart and others, which can be especially useful when data lies on a constrained manifold such as the unit sphere, the space of positive semi-definite matrices, the probabilistic simplex, etc. We evaluate the model in different settings and find it competitive even on image data, where Beta SS-DDPM achieves results comparable to a Gaussian DDPM.
翻译:以DDPM为基础的“DDPM”模型方法成为基因模型模型的无处不在的工具,但是,这些模型大多局限于高森和离散扩散过程。我们提出“Star-Shaped Denoising Difoism扩散概率模型”(SS-DDPM),这是一个非马尔科维安扩散相似的模糊过程模型。在Gaussian分布的情况下,该模型相当于Markovian DDPMs。然而,该模型可以用任意的无线分布来定义和应用。它可以接受在指数式大家庭中广泛分布的高效培训和抽样算法。我们提供了一种设计扩散式模型的简单配方,其分布方式有Beta、von Miss-Fisher、Drichlet、Westart等,当数据涉及诸如单位领域、正半确定矩阵空间、正对等简单格式等的简单模型时,则特别有用。我们在不同环境中评价模型,发现它具有竞争力,甚至在图像数据上具有竞争力,而GADMDDM取得可比较的结果。