We prove the equidistribution of several multistatistics over some classes of permutations avoiding a $3$-length pattern. We deduce the equidistribution, on the one hand of inv and foze" statistics, and on the other hand that of maj and makl statistics, over these classes of pattern avoiding permutations. Here inv and maj are the celebrated Mahonian statistics, foze" is one of the statistics defined in terms of generalized patterns in the 2000 pioneering paper of Babson and Steingr\'imsson, and makl is one of the statistics defined by Clarke, Steingr\'imsson and Zeng in 1997. These results solve several conjectures posed by Amini in 2018.
翻译:我们证明,在一些类别的变异中,若干多统计的分布是均衡的,避免了3美元长度模式。 我们推断出,一方面是火化和引信统计数据的分布,另一方面是马吉和马克尔统计数据的分布,避免了变异。 在此处,马吉和马吉是著名的马霍尼亚统计数据,福泽是2000年巴布森和斯坦格勒斯姆松先驱论文中以普遍模式定义的统计数据之一,马克尔是1997年克拉克、斯坦格鲁斯和赞界定的统计数据之一。 这些结果解决了阿米尼在2018年提出的几个猜测。