We present a machine learning model for the analysis of randomly generated discrete signals, modeled as the points of an inhomogeneous, compound Poisson point process. Like the wavelet scattering transform introduced by Mallat, our construction is naturally invariant to translations and reflections, but it decouples the roles of scale and frequency, replacing wavelets with Gabor-type measurements. We show that, with suitable nonlinearities, our measurements distinguish Poisson point processes from common self-similar processes, and separate different types of Poisson point processes.
翻译:我们提出了一个用于分析随机产生的离散信号的机器学习模型,该模型以不相容的复合 Poisson点过程的点为模型。 就像Mallat 引入的波盘散射变换一样,我们的构造自然地对翻译和反射没有变化,但是它分解了规模和频率的作用,用加博类测量取代波子。 我们的测量结果显示,在适当的非线性条件下,我们的测量结果区分了Poisson点过程和共同的自相类似的过程,以及不同的不同种类的波森点过程。