This article discusses the security of McEliece-like encryption schemes using subspace subcodes of Reed-Solomon codes, i.e. subcodes of Reed-Solomon codes over $\mathbb{F}_{q^m}$ whose entries lie in a fixed collection of $\mathbb{F}_q$-subspaces of $\mathbb{F}_{q^m}$. These codes appear to be a natural generalisation of Goppa and alternant codes and provide a broader flexibility in designing code based encryption schemes. For the security analysis, we introduce a new operation on codes called the twisted product which yields a polynomial time distinguisher on such subspace subcodes as soon as the chosen $\mathbb{F}_q$-subspaces have dimension larger than $m/2$. From this distinguisher, we build an efficient attack which in particular breaks some parameters of a recent proposal due to Khathuria, Rosenthal and Weger.
翻译:本文章讨论使用Reed-Solomon代码子空间子代码的McEliece类加密方案的安全性,这些代码使用Reed-Solomon代码的子空间子代码,即Reed-Solomon代码的子代码,超过$\mathbb{F ⁇ q ⁇ m}$mathbb{F ⁇ q$-Sub空间的固定集合中,其条目为$\mathbb{F ⁇ q$-Sub空间的$mathb{F ⁇ q ⁇ m}$\mathb{F ⁇ q ⁇ m}$。这些代码似乎是Goppa和交替代码的自然概括,在设计基于代码的加密方案时提供了更大的灵活性。关于安全分析,我们引入了一种名为扭曲的代码的新操作,即当所选的$\mathb{F ⁇ q ⁇ q$-Sub空间的尺寸大于$m/2美元时,在此类子代码上产生一个多时的多时分时间区分器。我们从这个区分器中构建了一种有效的攻击,特别是打破了Khathuria、 Rosent和Weger最近提议中的一些参数。