Decentralized and federated learning algorithms face data heterogeneity as one of the biggest challenges, especially when users want to learn a specific task. Even when personalized headers are used concatenated to a shared network (PF-MTL), aggregating all the networks with a decentralized algorithm can result in performance degradation as a result of heterogeneity in the data. Our algorithm uses exchanged gradients to calculate the correlations among tasks automatically, and dynamically adjusts the communication graph to connect mutually beneficial tasks and isolate those that may negatively impact each other. This algorithm improves the learning performance and leads to faster convergence compared to the case where all clients are connected to each other regardless of their correlations. We conduct experiments on a synthetic Gaussian dataset and a large-scale celebrity attributes (CelebA) dataset. The experiment with the synthetic data illustrates that our proposed method is capable of detecting tasks that are positively and negatively correlated. Moreover, the results of the experiments with CelebA demonstrate that the proposed method may produce significantly faster training results than fully-connected networks.


翻译:分散式和联合式学习算法面临最大的挑战之一,即数据差异性,特别是当用户希望学习特定任务时。即使个人化头目被集中到共享网络(PF-MTL),将所有网络集中到分散式算法中,由于数据差异性的结果可能导致性能退化。我们的算法使用互换梯度来自动计算任务之间的相互关系,并动态调整通信图,将互利性任务联系起来,并分离出可能相互产生消极影响的任务。这一算法提高了学习性能,并导致更快的趋同,与所有客户都相互连接的情况相比,不管它们之间的关系如何。我们在合成高斯数据集和大型名人性特征(CelebA)数据集上进行实验。对合成数据的实验表明,我们拟议的方法能够检测积极和消极关联的任务。此外,与CeebA的实验结果表明,与CeebA的实验结果可能比完全连接的网络产生大大快的培训结果。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
20+阅读 · 2022年10月10日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员