In this article we revisit the problem of numerical integration for monotone bounded functions, with a focus on the class of nonsequential Monte Carlo methods. We first provide new a lower bound on the maximal $L^p$ error of nonsequential algorithms, improving upon a theorem of Novak when p > 1. Then we concentrate on the case p = 2 and study the maximal error of two unbiased methods-namely, a method based on the control variate technique, and the stratified sampling method.
翻译:在本条中,我们重新探讨了单调带框函数的数字整合问题,重点是非顺序蒙得罗方法的类别。我们首先对非顺序算法的最大差错($L ⁇ p$)提供了新的下限,改进了Novak的理论,当p > 1时,我们集中研究案例p=2,并研究两种不带偏见方法的最大差错,即基于控制变换技术的方法和分层抽样方法。