Parameterized systems of polynomial equations arise in many applications in science and engineering with the real solutions describing, for example, equilibria of a dynamical system, linkages satisfying design constraints, and scene reconstruction in computer vision. Since different parameter values can have a different number of real solutions, the parameter space is decomposed into regions whose boundary forms the real discriminant locus. This article views locating the real discriminant locus as a supervised classification problem in machine learning where the goal is to determine classification boundaries over the parameter space, with the classes being the number of real solutions. For multidimensional parameter spaces, this article presents a novel sampling method which carefully samples the parameter space. At each sample point, homotopy continuation is used to obtain the number of real solutions to the corresponding polynomial system. Machine learning techniques including nearest neighbor and deep learning are used to efficiently approximate the real discriminant locus. One application of having learned the real discriminant locus is to develop a real homotopy method that only tracks the real solution paths unlike traditional methods which track all~complex~solution~paths. Examples show that the proposed approach can efficiently approximate complicated solution boundaries such as those arising from the equilibria of the Kuramoto model.
翻译:多面方程式的参数化系统在科学和工程的许多应用中出现,其真正的解决方案有真实的解决方案,例如,动态系统的平衡、满足设计限制的链接、计算机视觉的场景重建。由于不同的参数值可以有不同数量的实际解决方案,参数空间被分解到其边界构成真实的对立岩体的区域。本文章认为,在机器学习中,将真正的对立岩作为监管分类问题定位,目的是确定参数空间的分类界限,而分类是真实解决方案的数量。关于多元参数空间,本文章展示了一种新颖的取样方法,仔细抽样了参数空间。在每个取样点,均态持续使用以获得相应的多面系统的真正解决方案的数量。机学技术,包括最近的邻居和深层学习,被用来有效地接近真实的对立岩体。在机器学习中学习真实的对立岩体的一个应用是开发一种真正的同质性方法,该方法只能跟踪真实的解决方案路径,而传统方法则不同,而传统的方法是跟踪所有对立式分辨率的对立度-分辨率选择。实例表明,从这些模型中可以有效地展示各种复杂界线。