Short video platforms have become an important channel for news sharing, but also a new breeding ground for fake news. To mitigate this problem, research of fake news video detection has recently received a lot of attention. Existing works face two roadblocks: the scarcity of comprehensive and largescale datasets and insufficient utilization of multimodal information. Therefore, in this paper, we construct the largest Chinese short video dataset about fake news named FakeSV, which includes news content, user comments, and publisher profiles simultaneously. To understand the characteristics of fake news videos, we conduct exploratory analysis of FakeSV from different perspectives. Moreover, we provide a new multimodal detection model named SV-FEND, which exploits the cross-modal correlations to select the most informative features and utilizes the social context information for detection. Extensive experiments evaluate the superiority of the proposed method and provide detailed comparisons of different methods and modalities for future works.
翻译:短期视频平台已成为重要新闻分享渠道,同时也是虚假新闻的新温床。为了缓解这一问题,对假新闻视频检测的研究最近引起了人们的极大关注。现有作品面临两个障碍:缺少全面和大规模数据集,多式信息利用不足。因此,在本文中,我们制作了中国最大的假新闻短视频数据集,名为假新闻,包括新闻内容、用户评论和出版简介。为了了解假新闻视频的特征,我们从不同角度对假新闻视频进行探索性分析。此外,我们提供了名为SV-FEND的新的多式联运检测模型,该模型利用跨模式的关联来选择信息最丰富的特征,并利用社会背景信息进行检测。广泛的实验评估了拟议方法的优越性,并详细比较了未来工作的不同方法和模式。